数学统计在一万次的局牌中, 开庄(Banker)约有4581次; 开闲(Player)约有4458次; 开和约有(Tie)961次./ `" P: ?) p9 h) n1 Z
由此结果可以得知, 开庄次数只比开闲次数多123次. 因此可以得到以下结论: 开庄与开闲的机会几乎相同. 根据此结论可以应用于以下的致胜法则.
连续买闲不买庄, 以系统投注法, 变码法来调整投注金额.
应用实例致胜法则二连输5手注码变化分别是1 2 3 4 5, 以1 为基数输一手加1以此类推. 2 {, |/ n9 M2 ~9 ]
应用前提
; Q% m' P5 h" Q2 z1 B/ }# ~
连赢5手注码变化分别是6 5 4 3 2, 赢一手减1以此类推.
连输5手连赢5手的结局是净赚5手.用此法的前提是你比须有足够的资金来运作, 每次赢满18手, 就必须从新用1为基码, 1 i* v9 i& F8 S2 J
开始新一轮的牌局.
凡上一铺所出的牌最后派的一张是: 10, J, Q, K, A, 2, 3, 4今铺就买闲, 凡上一铺所出的牌最后派的一张是: 5, 6, 7, 8, 9, 今铺就闲,庄各压一元.以系统投注法, 变码法来调整投注金额.
应用实例连输5手注码变化分别是1 2 3 4 5, 以1 为基数输一手加1以此类推. 4 q8 Q$ P* X; [* B9 Q) |
应用前提
+ e8 _4 A7 e/ \, U3 H- R
连赢5手注码变化分别是6 5 4 3 2, 赢一手减1以此类推. 5 k& k9 k- b Q) M
/ h6 _5 M6 E% I* J
连输5手连赢5手的结局是净赚5手.用此法的前题是你比须有足够的资金来运作, 每次赢满9手, 就必须从新用1为基码, 开始新一轮的牌局.
欢迎光临 优惠论坛 (http://www.tcelue.tv/) | Powered by Discuz! X3.1 |