优惠论坛
Well123
注册
找回密码 |
天策评选的优秀公司,所有会员与公司发生的问题我们将负责尽力协助处理。
收起/展开
新晋公司
 

新晋公司具有驻站代表,并不在论坛纠纷服务范围内,请会员自行判断选择

  • 356
S级信誉公司
ManBetX万博
YZ
乐投
taptap(点点)
E世博
瑞丰国际
A级信誉公司
吉祥坊
星宝合营
乐动体育
B级信誉公司
bet365
C级合作公司
CMP
金星
LOKI
平博
  • 推荐主题
  • 热门活动
  • 币圈快讯
  • 商城动态
重要通知
 
论坛搜索
              搜索
Array ( [fid] => 6974 [description] => 专注于币圈最新最快资讯,数字货币应用及知识普及 [password] => [icon] => b1/common_6974_icon.png [redirect] => [attachextensions] => [creditspolicy] => Array ( [post] => Array ( [usecustom] => 1 [cycletype] => 1 [cycletime] => 0 [rewardnum] => 5 [extcredits1] => 1 [extcredits2] => 1 [extcredits3] => 0 [extcredits4] => 0 [extcredits5] => 0 [extcredits6] => 0 [extcredits7] => 0 [extcredits8] => 0 [rid] => 1 [fid] => 6974 [rulename] => 发表主题 [action] => post [fids] => 32,52,67,447,1120,1151,1156,6750,6762,6763,6766,6769,6772,6773,6787,6796,6808,6809,6810,6813,6814,6820,6829,6830,6846,6856,6864,6865,6827,6930,6931,6776,6858,6880,6764,6932,6871,6758,6905,1116,6788,6812,6798,6736,6759,6842,6966,6767,6828,6924,6935,6936,6938,6940,6941,6826,6909,6803,6919,6911,6908,6881,6920,6912,6913,6921,6925,6922,6789,6818,6819,6872,6928,6969,6889,6888,6917,6939,6947,6961,6937,6943,6970,6869,6900,6902,6783,6817,1111,6870,6821,6876,6952,6954,6960,6942,6910,6949,6962,6963,6964,6927,6926,6973,6728,6929,6874,6894,6896,6885,6857,6868,1113,6778,56,6844,6878,6802,6933,6811,6923,6877,6875,6918,6892,6757,6832,6833,6795,6793,6848,6837,6849,6850,6851,6852,6853,6854,6863,6882,6836,6790,6838,6794,6791,6873,555,6934,6958,6944,6945,6907,6779,6886,6950,6904,6956,6862,6957,6855,6955,6959,6914,6965,6971,6972,6953,6976,6824,6815,6891,6866,6979,6977,6765,6903,6948,6980,6981,6983,6799,6982,6951,6984,6975,6895,6845,6879,1121,6974 ) [reply] => Array ( [usecustom] => 1 [cycletype] => 1 [cycletime] => 0 [rewardnum] => 0 [extcredits1] => 0 [extcredits2] => 1 [extcredits3] => 10 [extcredits4] => 0 [extcredits5] => 0 [extcredits6] => 0 [extcredits7] => 0 [extcredits8] => 0 [rid] => 2 [fid] => 6974 [rulename] => 发表回复 [action] => reply [fids] => 32,52,67,447,1120,1151,1156,6750,6763,6766,6769,6772,6773,6787,6796,6808,6809,6810,6813,6814,6820,6829,6830,6846,6856,6864,6865,6827,6930,6931,6776,6858,6880,6764,6932,6871,6758,1116,6788,6812,6798,6736,6759,6842,6966,6767,6828,6924,6935,6936,6938,6940,6941,6826,6909,6803,6919,6911,6908,6881,6920,6912,6913,6921,6925,6922,6789,6818,6819,6872,6928,6969,6889,6888,6917,6939,6947,6961,6937,6943,6970,6869,6900,6902,6783,6817,1111,6870,6821,6876,6952,6954,6960,6942,6910,6949,6962,6963,6964,6927,6926,6973,6728,6929,6874,6894,6896,6885,6857,6868,1113,6778,56,6844,6878,6802,6933,6811,6923,6877,6875,6918,6892,6757,6832,6833,6795,6793,6848,6837,6849,6850,6851,6852,6853,6854,6863,6836,6790,6838,6794,6791,6873,555,6934,6958,6944,6945,6907,6779,6886,6950,6904,6956,6862,6957,6855,6955,6959,6914,6965,6971,6972,6953,6976,6824,6815,6891,6866,6979,6977,6765,6903,6948,6980,6981,6983,6799,6982,6951,6984,6975,6895,6845,6879,1121,6974 ) ) [formulaperm] => a:5:{i:0;s:0:"";i:1;s:0:"";s:7:"message";s:0:"";s:5:"medal";N;s:5:"users";s:0:"";} [moderators] => 实习版主1 [rules] => [threadtypes] => Array ( [required] => 1 [listable] => 1 [prefix] => 1 [types] => Array ( [1590] => 论坛公告 [1752] => 公司优惠 [1603] => 虚拟币交流 [1753] => 数字钱包 [1754] => 虚拟币存提 [1755] => 交易所 [1655] => 虚拟币资讯 [1756] => 银行卡 [1757] => 第三方支付 [1760] => 币圈大佬 [1758] => 科技前沿 [1759] => 天策嗨聊 [1661] => 入驻合作 ) [icons] => Array ( [1590] => [1752] => [1603] => [1753] => [1754] => [1755] => [1655] => [1756] => [1757] => [1760] => [1758] => [1759] => [1661] => ) [moderators] => Array ( [1590] => 1 [1752] => [1603] => [1753] => [1754] => [1755] => [1655] => [1756] => [1757] => [1760] => [1758] => [1759] => 1 [1661] => ) ) [threadsorts] => Array ( ) [viewperm] => 9 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 31 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 7 8 [postperm] => 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 [replyperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 [getattachperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 [postattachperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 [postimageperm] => 26 22 11 12 13 14 15 27 43 44 60 61 62 63 64 19 67 68 69 73 75 76 83 84 87 90 91 92 33 38 57 58 65 66 74 77 79 80 85 86 1 2 3 [spviewperm] => [seotitle] => [keywords] => [seodescription] => [supe_pushsetting] => [modrecommend] => Array ( [open] => 0 [num] => 10 [imagenum] => 0 [imagewidth] => 300 [imageheight] => 250 [maxlength] => 0 [cachelife] => 0 [dateline] => 0 ) [threadplugin] => Array ( ) [replybg] => [extra] => a:2:{s:9:"namecolor";s:0:"";s:9:"iconwidth";s:2:"60";} [jointype] => 0 [gviewperm] => 0 [membernum] => 0 [dateline] => 0 [lastupdate] => 0 [activity] => 0 [founderuid] => 0 [foundername] => [banner] => [groupnum] => 0 [commentitem] => [relatedgroup] => [picstyle] => 0 [widthauto] => 0 [noantitheft] => 0 [noforumhidewater] => 0 [noforumrecommend] => 0 [livetid] => 0 [price] => 0 [fup] => 6729 [type] => forum [name] => 虚拟币讨论大厅 [status] => 1 [displayorder] => 3 [styleid] => 0 [threads] => 27604 [posts] => 442650 [todayposts] => 11 [yesterdayposts] => 1428 [rank] => 2 [oldrank] => 2 [lastpost] => 2763925 比特币ETF的选择与风险管理:兼顾成本效率和长期业绩(转) 1757376351 sunnyclare001 [domain] => [allowsmilies] => 1 [allowhtml] => 1 [allowbbcode] => 1 [allowimgcode] => 1 [allowmediacode] => 0 [allowanonymous] => 0 [allowpostspecial] => 21 [allowspecialonly] => 0 [allowappend] => 0 [alloweditrules] => 1 [allowfeed] => 0 [allowside] => 0 [recyclebin] => 1 [modnewposts] => 2 [jammer] => 1 [disablewatermark] => 0 [inheritedmod] => 0 [autoclose] => 0 [forumcolumns] => 3 [catforumcolumns] => 0 [threadcaches] => 0 [alloweditpost] => 1 [simple] => 16 [modworks] => 1 [allowglobalstick] => 1 [level] => 0 [commoncredits] => 0 [archive] => 0 [recommend] => 0 [favtimes] => 0 [sharetimes] => 0 [disablethumb] => 0 [disablecollect] => 0 [ismoderator] => 0 [threadtableid] => 0 [allowreply] => [allowpost] => [allowpostattach] => )
发帖
1234下一页
打印 上一主题 下一主题
[虚拟币交流] DeepSeek 被误读的 5 个真相,AI 大佬亲自揭秘-转载
[复制链接]
avatar
跳转到指定楼层
1#
DeepSeek 已经爆火了一个春节,红起来自然是非就多。尤其在海外局势变化错综复杂的情况下,DeepSeek 的天朝血统,给它招来了许多谣言。! V2 C; l) S* S6 V) \$ f- d

. e/ S& k% ^% B/ L, \Stability AI 曾经的研究主管 Tanishq Mathew Abraham 昨天挺身而出,以自己业内人士的身份下场,指出了 DeepSeek 极为特殊的几点:
$ ~+ R; |; a, t- h' n
' t0 U  ~" q/ j! ?) G* }8 V1.性能实际上与 OpenAI 的 o1 一样好,这是一个前沿模型,标志着开源真正赶上了闭源3 z1 H& P1 O+ K1 t: P
- c% p) s3 L/ Y0 ~: b. K. Z7 g/ V! i
2.与其他前沿模型相比,DeepSeek 以相对较低的训练费用完成
' |% }2 J% v) l6 m9 e
- G& {2 I/ W) Z* {3.易于使用的界面,结合其网站和应用程序中可见的思维链,吸引了数百万新用户加入
( f: \+ P* I; y9 X3 P
4 d, `: f# A! }2 p除此之外,他更是针对几大流行的谣言,写了长长一篇博文,分析解释了围绕在 DeepSeek 四周的(离谱)言论。
4 `% H$ Y: U. e$ z0 A
3 H3 f" g* P) Y, e2 T* R7 T以下为博客文章,内容有所编辑:
6 u' w1 H. y3 K8 D2 {5 |
* }  }( W' z3 E. L/ _* P2025 年 1 月 20 日,一家名为 DeepSeek 的天朝 AI 公司开源并发布了他们的推理模型 R1。鉴于 DeepSeek 是一家天朝公司,美国及其 AGI 公司存在各种「国家安全担忧」。由于这一点,**关于它的错误信息已经广泛传播。**9 ~( ^4 T, g: E; U5 a3 a

) m% `+ u* t- u$ u这篇文章的目的是反驳自 DeepSeek 发布以来,许多关于 DeepSeek 的极端糟糕的 AI 相关观点。同时,作为一个在生成式 AI 前沿工作的 AI 研究人员,提供更有平衡性的观点。, J5 s9 f- @8 V( ~8 P+ w

) [: u( v( D; l6 b- C. h谣言 1:可疑!DeepSeek 是一家突然冒出来的天朝公司
% O" W- B7 g" w6 m& ]; c完全错误,到 2025 年 1 月,几乎所有生成式 AI 研究人员都已经听说过 DeepSeek。DeepSeek 甚至在完整发布前几个月就发布了 R1 的预览!7 r! \  s! k$ G4 U& K
. A6 k! |9 h! e' f7 G
任何传播这种谣言的人,很可能并不从事人工智能工作——如果你不涉足该领域,却以为自己了解这个领域的一切,是荒谬且极其自负的。- x2 ~* s- J+ n) d0 z  l

# F% M7 h4 E: L) s( xDeepSeek 的首个开源模型 DeepSeek-Coder,于 2023 年 11 月发布。当时是业界领先的代码 LLMs(编者注:专注于理解和生成代码的语言模型)。正如下面的图表所示,DeepSeek 在一年内持续发货,达到 R1:" B# W1 R/ Y1 ^6 e

) a, g4 H% u7 R4 D* N( H* }% w  |2 F3 {! S  A
这不是一夜之间的成功,他们进步的速度也没有什么可疑之处。在人工智能发展如此迅速,且他们拥有一个明显高效的团队的情况下,一年内取得这样的进步在我看来是非常合理的。' ^% K+ |, `/ e, J9 T1 Z

% S) z; P) e( x3 H, V3 X* ^如果您想知道哪些公司在公众视野之外,但 AI 领域内备受看好,我会推荐关注 Qwen(阿里巴巴)、YI(零一万物)、Mistral、Cohere、AI2。需要注意的是,它们没有像 DeepSeek 那样持续发布 SOTA 模型,但它们都**有潜力发布出色的模型**,正如它们过去所展示的那样。, @/ H" J/ z7 Q* ~8 I% f3 p6 S

5 W+ g) _1 P& z+ y谣言 2:撒谎!这个模型的成本不是 600 万美元) ^( ~3 [6 F, r+ i" G
这是一个有趣的问题。这类谣言认为 DeepSeek 想避免承认他们有非法的幕后交易来获取他们不应获得的计算资源(由于出口管制),从而在关于模型训练成本的真实性上撒谎。# T  u8 M& ]( E# Y
+ S" W9 N( c* N6 `& h% I$ t  t6 n
首先,600 万美元这个数字值得好好研究。它在 DeepSeek-V3 论文中有提及,该论文是在 DeepSeek-R1 论文发布前一个月发布的:
: Y; d+ V/ r0 Y$ `, I4 \3 m+ A! j& q! c0 y
/ Q9 V$ G  L2 U7 f
DeepSeek-V3 是 DeepSeek-R1 的基础模型,这意味着 DeepSeek-R1 是 DeepSeek-V3 加上一些额外的强化学习训练。所以在某种程度上,成本已经不准确,因为强化学习训练的额外成本没有被计算在内。但那可能只会花费几十万美元。! d( p" u) K/ U( I

3 ?8 y1 ]0 f' t: O6 Z好的,那么 DeepSeek-V3 论文中提到的 550 万美元,是不正确的吗?基于 GPU 成本、数据集大小和模型大小的众多分析,已经得出了类似的估计。请注意,虽然 DeepSeek V3/R1 是一个 671B 参数的模型,但它是一个专家混合模型,这意味着模型的任何函数调用/前向传递只使用约 37B 参数,这是计算训练成本所使用的值。
9 P$ e9 u( E& j% ], W6 t
9 c% E- z) S' \( y* P然而,DeepSeek 的成本,是基于当前市场价格估计的这些 GPU 的成本。我们实际上并不知道他们的 2048 个 H800 GPU 集群(注意:不是 H100s,这是一个常见的误解和混淆!)的成本。通常,连续的 GPU 集群在批量购入时成本会更低,因此甚至可能更便宜。7 K8 f3 Q, I; Q% e. b

8 q# i& ?1 Y! o/ ~2 |* q但是这里有个问题,这是最终运行的成本。在这成功之前,可能进行了许多在小规模的实验和消融,这一部分会需要相当大的成本,但这些并未在此处报告。6 D7 k- Z# h3 w3 y) s+ O* z
8 z( v) M* c$ [3 A) I# z3 N
除此之外,可能还有许多其他成本,如研究员薪资。SemiAnalysis 报告称,DeepSeek 的研究员薪资传闻约为 100 万美元。这相当于 AGI 前沿实验室如 OpenAI 或 Anthropic 的高薪水平。' A8 X* I" k0 E( f$ X. j
& Z8 E" p, W4 y% E# j/ d
通常,当报道和比较不同模型的训练成本时,最终的训练运行成本是最受关注的。但由于糟糕的论调和错误信息的传播,人们一直在争论额外的成本使 DeepSeek 的低成本和高效运营性质受到质疑。这是极其不公平的。无论是从消融/实验的角度,还是从其他 AGI 前沿实验室的研究人员薪酬的角度来看,成本都非常显著,但这些通常在这样的讨论中没有被提及!; k3 E& t( i8 n4 R- d

2 C, r2 f3 i# J6 a) ]( g# n/ b' k谣言 3:这么便宜?所有美国 AGI 公司都在浪费钱,看跌英伟达' n8 v- g0 u8 P( A; c3 s7 h' k
我认为这又是一个相当愚蠢的看法。与许多其他 LLM 相比,DeepSeek 在训练中确实效率更高。是的,许多美国前沿实验室在计算上效率低下是非常可能的。然而,这并不一定意味着拥有更多的计算资源是坏事。
$ }0 Q. D  O) a& o2 o+ n6 u
: ]7 N. f2 T5 l% I% s  h1 X老实说,每当听到这样的观点,我就清楚地知道他们不懂 scaling laws,也不懂 AGI 公司 CEO(以及任何被视为 AI 专家的人)的心态。让我就这个话题发表一些看法。0 n! M2 n6 f& a3 b3 f; s

! `! n6 a2 k9 e# H1 T% WScaling laws 表明,只要我们继续将更多的计算能力投入到模型中,我们就能获得更好的性能。当然,AI 扩展的确切方法和方面随着时间的推移而发生了变化:最初是模型大小,然后是数据集大小,现在是推理时间计算和合成数据。' W  p  k2 ^# B( ~/ }3 a& L6 B

5 X0 F8 D3 `6 x+ C* h自 2017 年原始 Transformer 以来,更多的计算能力等于更好的性能的整体趋势似乎仍在持续。
3 O( C* J" F* D& _1 O. U$ X% A% c9 y
更高效的模型意味着您可以在给定的计算预算下获得更高的性能,但更多的计算资源仍然更好。更高效的模型意味着你可以用更少的计算资源做更多的事情,但使用更多的计算资源,可以做到更多!1 B9 Y' m: }; g1 y, V. P

3 N( k& `3 Y, l+ F9 b* c! B你可能有自己的关于 scaling laws 的看法。你可能认为即将出现一个平台期。你可能认为过去的表现并不能预示未来的结果,正如金融界所说。
* n" w; r1 e/ t0 \
+ _: F$ C$ K/ T2 b7 Y但如果所有最大的 AGI 公司都在押注 scaling laws 能够持续足够长的时间,以实现 AGI 和 ASI。这是他们的坚定信念,那么唯一合理的行动就是获取更多的计算能力。# M7 s, F" a/ X7 c

! u* F: T5 T$ w( A* C/ }现在你可能认为「NVIDIA 的 GPU 很快就会过时,看看 AMD、Cerebras、Graphcore、TPUs、Trainium 等」,blabla。有数百万种针对 AI 的硬件产品,都在试图与 NVIDIA 竞争。其中之一可能在将来获胜。在这种情况下,也许这些 AGI 公司会转向它们——但这与 DeepSeek 的成功完全无关。/ }. ?9 P1 @9 U' C$ h: _

* t* W; U; f- A: S  w" i个人而言,我认为没有强有力的证据表明其他公司会撼动 NVIDIA 在 AI 加速芯片领域的统治地位,鉴于 NVIDIA 目前的市场统治地位和持续的创新水平。
: ?, v6 U& ?$ Z
2 k- ~  R2 `# S, E0 u总体而言,我看不出为什么 DeepSeek 意味着你应该看跌 NVIDIA。你可能有其他理由看跌 NVIDIA,这些理由可能非常合理且正确,但 DeepSeek 似乎不是我认为合适的理由。
, J5 T# d' C- y5 g
( `! d5 ~5 l8 C2 g" J谣言 4:模仿罢了!DeepSeek 没有做出任何有意义的创新
2 o0 q; s$ L9 H6 Z错误。**语言模型的设计和训练方法有很多创新,其中一些比其他更重要**。以下是一些(不是完整的列表,可以阅读 DeepSeek-V3 和 DeepSeek-R1 论文以获取更多详细信息):* z0 @# f( n8 y  Y8 [/ `

6 ?7 l9 a) G! J' \! ?多头潜注意力 (MLA) – LLMs 通常是指利用所谓的多头注意力(MHA)机制的 Transformer。DeepSeek 团队开发了一种 MHA 机制的变体,它既更节省内存,又提供更好的性能。" R  p5 L( U/ G8 m
% @& `; s' ^" [4 T2 Z
GRPO 与可验证奖励 – 自从 o1 发布以来,AI 从业者一直在尝试复制它。由于 OpenAI 对它的工作方式一直相当保密,大家不得不探索各种不同的方法来实现类似 o1 的结果。有各种尝试,如蒙特卡洛树搜索(谷歌 DeepMind 在围棋中获胜所采用的方法),结果证明不如最初预期的那样有希望。  L% q; }- _5 c% K  ?$ ^
9 I$ P) H$ B' x
DeepSeek 展示了一个非常简单的强化学习(RL)管道实际上可以实现类似 o1 的结果。除此之外,他们还开发了自己变种的常见 PPO RL 算法,称为 GRPO,它更高效且性能更好。我想 AI 社区中的许多人都在想,我们为什么之前没有尝试过这种方法呢?
6 }1 V6 c  R; v! |" o
5 m! ~/ w* Y! s' ~5 oDualPipe – 在多个 GPU 上训练 AI 模型时,有许多效率方面需要考虑。你需要弄清楚模型和数据集如何在所有 GPU 之间分配,数据如何通过 GPU 流动等。你还需要减少 GPU 之间任何数据传输,因为它非常慢,最好尽可能在每个单独的 GPU 上处理。无论如何,有许多设置此类多 GPU 训练的方法,DeepSeek 团队设计了一种新的、效率更高且速度更快的解决方案,称为 DualPipe。
4 \7 L: p2 i- `$ x$ U+ z( L1 i
2 c$ w$ h+ ~( N" s我们非常幸运,DeepSeek 完全开源了这些创新,并写了详细的介绍,这与美国 AGI 公司不同。现在,每个人都可以受益,用这些创新的办法来提高他们自己的 AI 模型训练。- }! P/ ]/ q; f8 Z% _
. @" x' e) v% u9 {: _& U
谣言 5:DeepSeek 正在「汲取」ChatGPT 的知识* j# Q+ ^' V3 G4 O" X1 B2 ~
戴维·萨克斯(美国ZF的 AI 和加密巨头)和 OpenAI 声称,DeepSeek 使用一种称为蒸馏的技术「汲取」ChatGPT 的知识。
0 z; O! d' E; N8 K3 \$ J
5 b4 Z' W7 Q% L9 \首先,这里的「蒸馏」一词使用得非常奇怪。通常,蒸馏指的是在所有可能的下一个词(token)的全概率(logits)上进行训练,但这个信息甚至不能通过 ChatGPT 暴露出来。
) H4 O9 z$ k) S( H6 R6 e
% ^% G% f9 \& S4 f* B但是好吧,就假设我们在讨论如何使用 ChatGPT 生成的文本进行训练,尽管这并不是该术语的典型用法。5 [$ |- D1 z  |- o7 d
1 m2 L3 }9 e- F3 g
OpenAI 及其员工声称 DeepSeek 自己使用 ChatGPT 生成文本并在此基础上进行训练。他们没有提供证据,但如果这是真的,那么 DeepSeek 显然违反了 ChatGPT 的服务条款。我认为这对一家天朝公司来说,法律后果尚不明确,但我对此了解不多。
2 _% L3 r% h5 G. ^. b% d. l4 M/ c$ X
; p! e  {4 A; `请注意,这仅限于 DeepSeek 自己生成了用于训练的数据。如果 DeepSeek 使用了来自其他来源的 ChatGPT 生成数据(目前有许多公开数据集),我的理解是这种「蒸馏」或合成数据训练并未被 TOS 禁止。2 W6 \+ [1 I8 p- V+ n5 E
' l2 A- D& S. y# h4 c
尽管如此,在我看来,这并不减少 DeepSeek 的成就。与 DeepSeek 的效率方面相比,作为研究人员,让我印象更深刻的是他们对 o1 的复制。我非常怀疑对 ChatGPT 进行「蒸馏」有任何帮助,这种怀疑完全是出于 o1 的 CoT 思维过程从未公开过,那么 DeepSeek 如何能够学习它呢?
2 q7 o( H+ m' ]) n. F8 E! b0 n8 Q' a" V( {" e' t( H
此外,许多 LLMs 确实在 ChatGPT(以及其他 LLM)上进行了训练,而且在新抓取的任何互联网内容中自然也会有 AI 文本。
1 p: t- _# b# ?2 L. r  R$ u3 @  n- v4 ~7 @
总体而言,认为 DeepSeek 的模型表现良好仅仅是因为它简单提炼了 ChatGPT 的观点,是忽略了 DeepSeek 在工程、效率和架构创新方面的现实。9 k% ?9 S8 S9 C. R, S

# c: L0 ^3 u8 @/ v应该担心天朝在人工智能领域的霸权吗?
3 M+ V& {% F* J/ n0 s- d" v: b2 {或许有一点?坦白说,现在和两个月前相比,中美 AI 竞赛在实质上并没有太多变化。相反,外界的反应相当激烈,这确实可能通过资金、监管等方面的变化影响整体 AI 格局。* o6 z% L- }" [& c% b1 P9 \
! B2 L  ]# b# l6 @* {
天朝人一直都在人工智能领域具有竞争力,DeepSeek 现在让他们变得无法忽视。" L7 y" ]- t1 P. F+ F. g* g0 Y
8 `% t) M% n; y  `6 B
关于开源的典型论点是,由于天朝落后,我们不应该公开分享我们的技术,让他们赶上。但显然,天朝已经赶上了,他们实际上很久以前就已经赶上了,他们在开源方面实际上处于领先地位,因此不清楚进一步收紧我们的技术,实际上的帮助是否有那么大。
) p" b7 p4 m: F! }1 h8 E
  a0 T9 I* o; B请注意,像 OpenAI、Anthropic 和 Google DeepMind 这样的公司肯定有比 DeepSeek R1 更好的模型。例如,OpenAI 的 o3 模型的基准测试结果相当令人印象深刻,他们可能已经有一个后续模型正在开发中。$ X/ u/ r4 f" G. a( b
2 V+ c% b" N+ _7 k  [
在此基础上,随着像星门项目以及 OpenAI 即将到来的融资轮等重要额外投资,OpenAI 和其他美国前沿实验室将拥有充足的计算能力,以保持他们的领先地位。/ p. ~7 U* V" B  U3 H
" l4 ^8 z0 D6 a$ y. W6 V9 _0 x
当然,天朝将向人工智能发展投入大量额外资金。所以总的来说,竞争正在升温!但我认为,美国 AGI 前沿实验室保持领先的道路仍然相当有希望。
* f& ?& b4 ^  f( t
; u1 D) A* j2 q7 z, P7 \  s结论
8 e0 y; N, ]& f% n' _1 V$ S一方面,一些 AI 人士,尤其是 OpenAI 的一些人,试图淡化 DeepSeek。而另一方面,一些评论家和自称专家对 DeepSeek 又反应过度。
8 u) t7 b6 V2 z2 K3 I3 ?0 l% E0 @  p2 T" o
需要指出的是,9 d0 z" C7 v2 K; t
OpenAI/Anthropic/Meta/Google/xAI/NVIDIA 等并没有就此完蛋。不,DeepSeek (很可能)没有在说他们所做的事情上撒谎。无论如何必须承认的是:DeepSeek 应得到认可,R1 是一个令人印象深刻的模型。( B8 u  e. F) z. r+ b
5 \4 v( Y9 x! U; Q3 F6 g
avatar
2#
这个真相是需要去了解下了啊。
avatar
3#
管它怎么读呢,各人有各人的理解
avatar
懂得这个方法我非常也是必定收藏起来了的哦。
avatar
主题回复处广告图案-天策传媒
这个楼主的一些看法我是觉得还是挺好的了啊
avatar
看上去老哥的看法是挺有感悟的许多的道理不错
avatar
7#
这个方法行自己好好掌握,也是很棒的。
avatar
8#
感恩大佬的分享,好人一生幸福。
avatar
9#
方法最后一段话觉得是有道理的,但是在我面前就难以实现,毕竟好运太差了。
avatar
你的看法很不错,看论坛的决定了,没想到你的文采这么好
avatar
11#
菠菜肯定有推荐,这是必须的
avatar
12#
感谢您介绍的技巧都不能无视技巧啊
avatar
楼主的这些看法也是要好好看看了,你的用心了的!
avatar
这一次方法在论坛的运气还是值得肯定的.
avatar
15#
我是看完了,老哥后面的看法和提议也是赞同
avatar
搞小一点,就是运气不好,也不会搞的输了,心态肯定好啊
avatar
这样的分享是可以收藏起来,然后学习一下的。
1234下一页
您需要登录后才可以回帖 登录 | 论坛注册

本版积分规则

:) :( :D :'( :@ :o
:P :$ ;P :L :Q :lol
:loveliness: :funk: :curse: :dizzy: :shutup: :sleepy:
:hug: :victory: :time: :kiss: :handshake: :call:
{:8_286:} {:8_287:} {:8_288:} {:8_289:}
{:8_290:} {:8_291:} {:8_292:} {:8_293:}
{:8_294:} {:8_295:} {:8_296:} {:8_297:}
{:8_298:} {:8_299:} {:8_300:} {:8_301:}
{:8_302:} {:8_303:} {:8_304:} {:8_305:}
{:8_306:} {:8_307:} {:8_308:} {:8_309:}
{:8_310:} {:8_311:} {:8_312:}
{:8_313:} {:8_314:} {:8_315:} {:8_316:}
{:8_317:} {:8_318:} {:8_319:} {:8_320:}
:) :( :D :'( :@ :o
:P :$ ;P :L :Q :lol
:loveliness: :funk: :curse: :dizzy: :shutup: :sleepy:
:hug: :victory: :time: :kiss: :handshake: :call:
:) :( :D :'( :@ :o
:P :$ ;P :L :Q :lol
:loveliness: :funk: :curse: :dizzy: :shutup: :sleepy:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory:
:) :( :D :'( :@ :o
:P :$ ;P :L :Q :lol
:loveliness: :funk: :curse: :dizzy: :shutup: :sleepy:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory: :time: :kiss: :handshake: :call:
:hug: :victory: :time: :kiss: :handshake:
未有绑定记录
 


Powered by 天策论坛   © 2007-2025 天策论坛 | 小黑屋 | 手机|
1717 : 0